P31 Synthesis, Optical and Electrochemical Properties of Perylenes Dyes for Solar Cells Applications
نویسندگان
چکیده
Perylene monoimides or monoanhydrides are being intensively investigated as sensitizers in DSSCs. Keeping only one acceptor group, i.e. imide or anhydride, and introducing a donor group in the 9-position (such as diarylamine) proved to be important in order to obtain a favorable orbital partitioning strength and dipole moment of perylene compounds for DSSCs [1]. One way to control optical and electrochemical properties of perylenes dyes is achieved by functionalizing periand bay positions of perylene core with different substituents. In a simplified view, the peri groups coarsely tune the spectroscopic and electrochemical properties whereas the bay functional groups provide an additional fine tuning [2,3]. Here we report the design and synthesis of new perylene dyes (Figure 1) comprising: (1) a 4-alkoxyphenylamino moiety in the 9-position as a strong donating group, (2) a cyanoacrylic acid as electron acceptor and anchoring group and (3) a triple bond as short and rigid linker between perylene core and the acceptor group [4]. The photophysical properties (i.e. absorption and emission spectra, absorption extinction coefficients, fluorescence quantum yields and lifetime measurements) and electrochemical properties of the new perylene dyes were investigated and all results will be presented and discussed. This work was supported by National Funds through FCT Foundation for Science and Technology under the Project EXPT/CTM-ENE/0304/2012.
منابع مشابه
Synthesis and Investigation of Photovoltaic Properties of New Organic Dye in Solar Cells Device
In this paper, we designed and synthesized free-metal dyes based on indoline. The proposed dyes were synthesized from phenothiazine as the starting material by standard reactions. The chemical structure of the synthesized dye was confirmed using FT-IR, 1HNMR and DSC techniques. Spectrophotometric measurements of the organic dyes in acetonitrile and on a TiO2 substrate ...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملSynthesis and Characterization of Indoline-based organic sensitizers for photoelectrochemical cells
In this paper we designed and prepared three free-metal organic days Dye 1, Dye 2 and Dye 3 based on indoline with n-phenly substituents iminodibenzyl as the electron donor group. We used cyanoacrylic acid substituent as the electron acceptor anchoring group in organic dyes. The proposed dyes were prepared from iminodibenzyl as the starting material by standard reactions and characterized by di...
متن کاملMaterials Based on Carbazole for Organic Solar Cells Applications. Theoretical Investigations
The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The Co...
متن کاملSynthesis and Application of Two Organic Dyes for Dye-Sensitized Solar Cells
In the present study, two new organic dyes based on indigo were prepared and used as sensitizers in dye-sensitized solar cells. To this end, indoxyl was utilized as the electron donor and cyanoacrylic acid as the electron acceptor anchoring groups. These dyes together with their corresponding intermediates were purified and characterized by FTIR, 1HNMR, 13CNMR, elemental analysis and UV-Visible...
متن کامل